

Deliverable n° D3.2

Green worktops Type 2-3 test report and pictures

Summary:

One of LIFE GREEN COMPOSITE's objectives is the development of new panels for worktops from recycling of sink waste, powders and dusts from sink production, with other composite, fiberglass and rigid foam waste.

The purpose of Deliverable D3.2 is to report the results of production trials and evaluation tests relating to the production of Green worktops Type 2 and 3, which involves the incorporation of DELTA's sink waste together with other waste already used by GEES, plus the use of Delta R-PMMA as coating or outer layer of material.

A new type of panel, the Type 4 was also developed to obtain a different aspect and quality product The production trials and related evaluation tests are documented by a photo report. Very satisfactory results have been achieved especially for this last Type 4, whose development can be considered as an integration with correction of the other types of panels.

Authors:

Giorgio Betteto

Project acronym: LIFE21-ENV-IT-LIFE GREEN COMPOSITE

Project title: Greening kitchen sinks and worktops: exploiting industrial symbiosis to

produce acrylic mineral composites from recycled and tracked production

waste in a replicable circular value chain

Grant Agreement number: 859087

Call identifier: LIFE-2021-SAP-ENV

Start date of the project: 01/08/2022

Duration: 36 months

Website: EU Funding & Tender Portal

Geesrecycling – life green composite

This report has been produced with financial support from the European Union's LIFE Programme under grant agreement No 101074703. Views and opinions expressed are those of the author(s) only and do not necessarily reflect those of the European Union or CINEA. Neither the European Union nor CINEA can be held responsible for them.

SUMMARY

Table of content

1.	Executive summary	3
2.	Introduction	3
3.	Preparatory operations	4
4.	Type of materials developed for worktops and panels	4
5.	Green worktops Type 2	5
5.1 (Composition	
5.2 F	Production trials and evaluation	
5.3 E	External test report: Mechanical performance from laboratory testing report	8
5.4 E	External test report: Resistance to stains, chemicals and cleaning products	10
5.5 E	External test reports: resistance to wet heat	13
5.6 E	External test report: effects of light exposure	
5.7 F	Photographic impressions of panels and tests	15
5.8 F	Report on CNC Cutting cutting and milling of the Type 2 Panels	19
6.	Green worktops Type 3	
6.1 (Composition	22
6.2 F	Production trials and evaluation	22
6.3 E	External test report: mechanical performances	23
6.5 I	Photographic impressions of panels and tests	25
7.	Type 4 Panels	28
7.1 (Composition and production trials	28
7.2 E	External test report: mechanical performance	30
7.3 F	Photographic impressions of panels Type 4	33
8.	Conclusions	35

1. Executive summary

The basic idea pursued by Gees Recycling S.r.l. (hereafter GEES) in partnership with Delta S.r.l. (hereafter DELTA) within the framework of the LIFE GREEN COMPOSITE project is to create a pathway to utilize composite sink waste, while improving the quality of the worktops and panels already produced by GEES with other waste materials.

GEES' strategy aims to strengthen the circular economy, already the basis of its production, through the industrial symbiosis initiated with DELTA, focusing on the following objectives:

- ♣ Create recycling routes for Delta sink waste not reusable by Delta itself and for other solid surfaces materials
- ♣ Create new kitchentops from circular economy and recycling instead of using non-renewable resources
- ♣ Introduce 'green resins' for the production of solid colours panels
- ♣ Demonstrate the use of R-PMMA as coating or surface layer in alternative to other synthetic virgin products

The expected results are: finished products like worktops, panels and other furniture components.

The purpose of Deliverable D3.2 is to report the results of production trials and evaluation tests relating to the production of Green worktops Type 2 and 3, two of the three types of panels to be developed in the project. The new production line includes the incorporation of DELTA's sink scraps together with other scraps already used by GEES, plus the use of Delta R-PMMA

Further work and development lead to the creation of an entire new line of panel, Type 4, obtained by mixing selected sink waste and low-density PMI Rigid foam powders and/or glass microcapsule, the development of whiche can be considered as an integration with correction of the other types of panels.

Results are valuable and lead to new products with appreciated by market qualities, also confirming the competitiveness of >90% recycled materials - coating included - respect the traditional virgin sourced.

2. Introduction

Recycling composites is to date a complicated process, and this applies even more for mineral-filled composite. It is impossible to separate the organic part from the inorganic part, as they are chemically bound to achieve the highest mechanical properties.

At the same time, the use of recycled materials in the manufacturing of acrylic mineral composites is still limited, due to the complex processing techniques, that are very dependent on extremely pure materials.

In Europe, about 1,5 Million kitchen sinks are yearly produced in this material, showing an increasing appreciation by consumers due to their particular properties.

About 17 % of the overall production constitutes waste: considering an average weight of 14 kg per sink, this implies that in Europe yearly 21.000 ton of raw materials are used for the production of these kitchen sinks, producing an amount of waste of about 3.654 ton. These scraps and refuses are for about 98 % landfilled as

special industrial waste (cod. CER 070213 plastic waste), consisting in mineral waste heavily polluted by polymers.

LIFE GREEN COMPOSITE aims to reduce such industrial waste by demonstrating on a pilot and industrial scale circular solutions for the reuse of acrylic mineral composite waste and the production of such composites from secondary raw materials.

3. Preparatory operations

It was necessary to install additional equipment to do the project work , an Hydraulic press where to do the numerous production tests outside of the production line , with higher platen temperatures to process different resins

• Laboratory - pilot press , with 1000 x 650 mm platen , 300 T hydraulic power and temperature regulable up to 200 C°

Gees has completed these operations; the equipment installed worked and results are confirming expectations.

Figure 1 - laboratory press during test productions

4. Type of materials developed for worktops and panels

GEES RECYCLING is using its proprietary technology to test new mixtures of very different raw materials, developing new recycled composites with specific performance and characteristics such as low density, water resistance, impact and stain resistance, UV behavior and antibacterial qualities by mixing additives or active components

In the context of LGC project, three types of panels are planned for production, all three consisting of secondary raw materials >90%, sourced through a circular supply chain, but with different Delta - sink waste contents:

- Type 1 Grained panel, Monolayer: Composed of 70% Delta sink waste (0,6-6 mm), 25% various polysterenes and fibreglass waste from wind turbine blades, 5% polyurethane resin; Representing top quality product, with high density, that can be milled and worked as a natural stone, with possibility of having much thicker slabs respect actual products. This quality is referred to as TYPE 1 worktop.
- Type 2 Solid colour panel, Multilayer: Composed of a visible layer (20%) and an invisible layer (80%). The invisible layer will have the similar composition as the grained panel but will be coated with 100% recycled material (DELTA dispersion) The 100% recovery resin is from Delta, that is studied for the new applications for GEES Medium quality product –(reduced density)
- Type 3 Solid colour panel Monolayer: Composed of a visible layer (20%) and an invisible layer (80%).
 The invisible layer consists of 95% various lightened polyester scraps, glass fibre and PVC; 5% polyurethane resin Resulting in a Lower quality slab with low density. Outer surface in sink waste composite/dispersion green? and inner core in recycled low-density rigid foam, to be placed on market that is currently dominated by wood-particle laminates

We have added a new family of panels, where the sink waste is mixed with low density powders from PMI Foam (Rohacell) in two versions:

- Grained color mass medium density
- Grained color mass high density

The target – indicated by the market demands of the customers, was to obtain a "natural stone" look with high variability and color and grain similar throughout the mass to allow for 3D shapes obtained by CNC milling; we have defined these new panels as Type 4.

5. Green worktops Type 2

5.1 Composition

The "Type 2" panel production was tested within the framework of WP3 (Task 3.2); this is the multilayer panel composed of a visible layer coated with R-PMMA resin on a support made of high-density recycled composites.

One of the most interesting aspects of Type 2 panels using the R-PMMA coating is the possibility of creating extremely transparent high-thickness coating, which also allow the incorporation of different substances for aesthetic purposes.

SOLID PANEL MULTILAYER	70%	DELTA sink waste
(TYPE 2)	15%	Various polyester + glass fiber waste from wind turbine blades
	5%	Polyurethane resin
	10%	R-PMMA Coating

Table 1: Type 2 worktop composition

Incoming waste: like all the waste we recycle, these have also been tested according to the law to be declared non-hazardous. The waste component derived from sinks for Type 2 worktop (70%) is obtained from mechanical granulation of defective sinks and waste parts, resulting in:

70 % Sink waste , of which

- 40 % Shredded sinks
- 30% Dust and powder

Source materials and different process stage of raw materials:

The component derived from other industrial waste (15%) is in part derived from industrial fiberglass waste, in part from rigid foam waste:

15% Other composite waste, of which

• 5 % Fiberglass from industrial and wind Blades

(e) Fiberglass from industrial (f) low density rigid foam waste and wind Blades

Production tests confirmed this composition.

5.2 Production trials and evaluation

GEES conducted a few production trials for the transformation of waste mixtures into rigid panels of TYPE 2.

- 3 different production tests were carried out:
 - o 201.14 October 2023 lot # 105 Thickness 20 mm + 5 mm D. 1050
 - o 202.18 December 2023 lot # 211 Thickness 20 mm +3 mm D. 1055
 - o 204.19 April 2024 lot # 298 Thickness 20 mm +3 mm D. 1055

All the materials produced were then tested to evaluate the results according to a standard procedure:

- 1. Density calculation and verification of average deviation tools: scale and calibre
- 2. Planarity verification- tools: rectified planarity bench, calibre
- 3. Surface roughness and porosity tools : magnifying lens

Test results are reported here following:

- o 201.14 October 2023 lot # 105 Thickness 20 mm + 5 mm D. 1050
- Density average: 1050, lowest 1010 highest 1112 result in tolerances
- Planarity: Good: < 3 mm over 2500 mm lenghtwise. < 2 mm broadwise
- Surface roughness: rough Surface with porosity
 - o 202.18 December 2023 lot # 211 Thickness 20 mm +3 mm D. 1055
- Density average: 1055, lowest 1001 highest 1080 result in tolerances
- Planarity: bad: > 5mm over 2500 mm lenghtwise. > 3,5 mm broadwise
- Surface roughness: bad, evident porosity
 - 204.19 April 2024 lot # 298 Thickness 20 mm +3 mm D. 1055
- Density average: 1055, lowest 1001 highest 1080 result in tolerances
- Planarity: Good: < 3 mm over 2500 mm lenghtwise. < 2 mm broadwise

Surface roughness: Good, no evident porosity, natural hydrophobicity

Life Green Production
Composite tests Type 2

Test #	Period	Lot#	Thickness	Density avg	Density Max	Density min	In tolerance	Planarity	Surface	Edge
201.14	Oct 23	105	20+5	1055	1112	1010	Yes	<3	Good	Good
202.18	Dec 23	211	20+3	1055	1080	1155	Yes	>5	Bad	Bad
204.19	April 24	298	20+3	1055	1080	1001	Yes	<3	Good	Good

204.19 lot #298 is the best result and will be taken as base for further developments. This panel was submitted to mechanical tests and surface resistance tests as foreseen in Task 3.4.

204.19 lot #298 was also submitted to a flame test; results were encouraging as no flame propagation occurred, little smoke and no droplets were observed.

A strong self-extinguishment was noted that lead us to carry out official flame behaviour tests following EN 13501 FL (see picture 5 in § 5.7).

The potential customers after the first deliveries of Life Green Composite obtained panels told us of no importance given to Tensile strength tests, since the kitchentops applications are more similar to stone; resistance to cold liquids, where the tests on chemicals substances and cleaning products are more significant for markets; heat resistance is also a required characteristic; so we chose to perform the requested test and not the others.

5.3 External test report: Mechanical performance from laboratory testing report

Test Report 385321 / 1: Flexural properties on Panel Type 2 Lot 298

CATAS S.p.A. Testing site: via Antica, 24/3 via
Antica, 24/3 via
33048 San Giovanni al Nat. (UD) 33048 San Giovanni al Nat. (UD) 439 0432 747211 lab@catas.com tel. +39 0432 747211

www.catas.com lab@catas.com

GEES RECYCLING S.R.L. VIA MONTE COLOMBERA 22 33081 AVIANO (PN)

ITALIA

TEST REPORT 385231 / 1

Revision: Date of sample receipt: 29/11/24 Date of test: 18/12/24 23/12/24 Date of issue:

Sample name: Pannello Life Green Composite.

Plastics - Flexural properties UNI EN ISO 178:2019

Sample description: Not declared

Test method: A (one speed of testing)

Nominal thickness: 21 mm 336 mm Support span:

Specimen preparation: Performed by the customer

Test direction: Not identifiable Specimen shape: Parallelepiped > 72 h (23±2 °C and 50±5% r.h.) Testing temperature: 20±5°C Conditioning Testing equipment: Instron dynamometer mod. 5585 Test speed: 5 mm/min

Tested surface: Not identifiable

Risultati della prova:

Specimen n°	Width mm	Thickness mm	Maximum load N	Flexural strength MPa	Modulus of elasticity MPa
1	19,7	21,33	169	9,5	3.105
2	19,2	21,04	161	9,5	2.864
3	19,8	21,33	210	11,7	3.345
4	20,3	21,04	138	7,7	2.911
5	19,1	21,34	163	9,4	3.437
6	20,4	21,34	208	11,3	3.400
7	19,6	21,04	130	7,6	2.476
			Mean Value	9,5	3.077
			Standard deviation	1,6	351

- Test ref. declared by the customer: Progetto 101074703-LIFE21-ENV-IT LIFE GREEN COMPOSITE
- Chemical analysis of the tested material has not been carried out.
- The company who asked for the test has collected and sampled the specimens.

The sample name and when relevant, its description, are given by the orderer, and CATAS does not assume responsibility on this matter. This test report relates to the sample submitted for the beta_end no others. Additions, deletions or alterations are not permitted. This test report must always be reproduced in its entirety. Unless otherwise required by standards and technical specifications or agreed with the customer, any declarations of conformity made by CATAS are based on the comparison between results and reference values, where the confidence intervals of the measures are not taken into account. Unless otherwise stated, sampling is made by the customer; in this case the test results are referred to the sample as received.

Test Report 385321 / 2: Compression properties Panel lot 298 / Uncoated, thickness 20 mm uncalibrated

CATAS S.p.A. Testing site: via Antica, 24/3 via Antica, 24/3 33048 San Giovanni al Nat. (UD) 33048 San Giovanni al Nat. (UD)

+39 0432 747211 - lab@catas.com tel. +39 0432 747211

GEES RECYCLING S.R.L. VIA MONTE COLOMBERA 22

33081 AVIANO (PN)

ITALIA

385231 - 2

Date of sample receipt: 29/11/24 Date of test: 17/12/24

TEST REPORT

Sample name: Pannello Life Green Composite.

Plastics - Compressive strength UNI EN ISO 604:2008

Not declared Sample description declared:

Parallelepiped and a compressive load is applied on the specimen surface Specimen shape and load direction:

Nominal thickness: 21 mm

Conditioning: > 72h (23±2 °C and 50±5 % r.h.) Test conditions: 23±2

°C and 50±5 % r.h.

Date of issue

Test equipment: Instron dynamometer mod. 5985 Load applicators: Steel plates (Ø 150 mm)

Test speed: 2 mm/min

Test results:

Specimen n°	Width mm	Length mm	Maximum load N	Compressive strength MPa
1	20,26	19,98	13.451	33,2
2	20,44	20,04	15.270	37,3
3	20,41	20,43	15.351	36,8
4	19,92	20,11	14.573	36,4
5	20,52	19,78	15.494	38,2
6	20,32	20,12	13.847	33,9
7	19,30	19,91	12.803	33,3
8	20,49	19,32	15.074	38,1

35,9 Standard deviation 2.1 5.8 % Coeff, of var

Test ref. declared by the customer: Progetto 101074703-LIFE21-ENV-IT LIFE GREEN COMPOSITE- Chemical

analysis of the tested material has not been carried out

The company who asked for the test has collected and sampled the specimens

Ifs description, are given by the orderer, and CATAS does not assume responsibility on this matter. This test report relates to to others. Additions, deletions or alterations are not permitted. This test report must always be reproduced in its entirety. Unless chiral as positionations or agreed with the customer, any declarations of conformity made by CATAS are based on the

A note on tests results: the Thickness of the panels was 22 mm for the uncalibrated panel, reduced to 21 mm after calibration; variations on thickness are intrinsic to the process and recycled content.

5.4 External test report: Resistance to stains, chemicals and cleaning products

The use as Kitchentop or table top material requires to have a good resistance to the events may happens like stains of any food product, liquids acids or basic and cleaning products.

Tests were done by Delta using standard procedures for kitchen sinks (higher requirements respect kitchentops):

Deco LGC with Acrylic Monocomponent Coating, test result 06/2024 Panel Type 2 Lot#298

Here are some excerpts from tests results from DELTA.

DELTA TECHNICAL REPORT D-02/2024

Object: Deco LGC Acrylic Monocomponent Coating

Testing of chemical resistance:

SUBSTANCE	TYPE
1. Acid acetic (CH₃COOH), 10% V/V	Acid
2. Sodium Hydroxide (NaOH), 5% m/m	Alkali
3. Etanol (CH ₃ CH ₂ OH), 70% V/V	Alcohol
4. Sodium hypochlorite (NaOCl), 5% di chlore (Cl ₂)	Bleaching
5. Methylene Blue, 1% m/m	Staining agents
6. Sodium chloride (NaCl), 170g/l, diluted at 50%	Salt

Testing of resistance to house cleaning products:

DETERGENTS
Lysoform
Viakal
Cif Cream
Bleach
Ammonia
Alcool
Multiuse Cleaner

Results of resistance tests on chemicals and coloring agents:

		Evaluation and conformity			
Family	Product	After rinse with water	Water cleaning with sponge	Allumina + wáter cleaning with sponge	
1 - Acids	Acetic Aclid (CH₃COOH), 10% V/V	E	E	1	
2 - Alkali	Soda caustic (NaOH), 5% m/m	Е	E	1	

3 - Alcohol	Ethanol (C₂H₅OH), 70% V/V	E	E	1
4 - Bleach	Sodium Hypochlorite (NaOCI), 5% active chlore (Cl ₂) ¹	E	E	1
5 - Colourant	Methylene blue, 1% m/m	E	E	/
6 - Salts	Sodium chloride (NaCl) 170g/l, diluted to 50%	E	E	1

Results of resistance tests of surfaces to domestic cleaning products:

	Evaluation and conformity		
Product	After rinse with water	Water cleaning with sponge	
1. Lisoform Bathroom Gel	E	Е	
2. Viakal	E	Е	
3. Cif creme	E	E	
4. Bleach	E	Е	
5. Ammonia	E	Е	
6. Alcool	E	Е	
7. Multiuse (Glassex)	E	E	

Legend of evaluation codes:

CODE	SIGNIFICANCE
Α	Surface deformation (NC)
В	Evident change of colour and brilliance (NC)
С	Moderate change of colour and brilliance rillantezza (NC)
D	Light change of colour and brilliance, visibile only at certain viewsights (NC)
Е	No visible change (C)

Results are positive and the growing interest in a high-performance, recycled coating is considered beneficial in many applications.

Deliverable D3.2: Green worktops Type 2 and 3 test report and pictures

5.5 External test reports: resistance to wet heat

CATAS S.p.A. Testing site: via Antica, 24/3 via Antica, 24/3

www.catas.com

33048 San Giovanni al Nat. (UD) 33048 San Giovanni al Nat. (UD) +39 0432 747211 - lab@catas.com tel. +39 0432 747211 lab@catas.com

LAB N° 0027 L deali MRA EA, IAF e ILAC

TEST REPORT

391056 / 1

Revision:

Date of sample receipt: 29/01/25 Date of test: 22/02/25 24/02/25 Date of issue:

ample name:

Pannello Life Green Composite Type 2 Coated

GEES RECYCLING S.R.L. VIA MONTE COLOMBERA 22 33081 AVIANO (PN) ITALIA

Surface resistance to wet heat UNI EN 12721:2013

Test results.	est results:				
Temperature °C	Rating	Remarks			
55	5	No visible changes.			
70	5	No visible changes.			
85	5	No visible changes.			
100	5	No visible changes.			
Reached class CEN/TS 16209:2022*		A+			

^{*} Classification not covered by accreditation.

Note:

- chemical analysis of the tested material has not been carried out;- the temperatures are according to CEN/TS 16209:2022 standard.
- Conditioning period: from 29/0 1/2025 to 22/02/2025.

This test report is part of a PDF file digitally signed by Franco Bulian.

The managing director Dr. Franco Bulian

The sample name and, when relevant, its description, are given by the orderer, and CATAS does not assume responsibility on this matter. This test report relates to the sample submitted for the test and no others. Additions, deletions or alterations are not permitted. This test report must always be reproduced in its entirety. Unless otherwise required by standards and technical specifications or agreed with the customer, any declarations of conformity made by CATAS are based on the comparison between results and reference values, where the confidence intervals of the measures are not taken into account. Unless otherwise stated, sampling is made by the customer; in this case the test results are referred to the sample as received.

5.6 External test report: effects of light exposure

CATAS S.p.A. Testing site: via Antica, 24/3 via

Antica, 24/3 33048 San Giovanni al Nat. (UD) +39 0432 747211 - lab@catas.com www.catas.com

33048 San Giovanni al Nat. (UD) tel. +39 0432 747211 lab@catas.com

GEES RECYCLING S.R.L. VIA MONTE COLOMBERA 22 33081 AVIANO (PN) ITALIA

TEST REPORT

391056 / 2 Revision:

29/01/25 Date of sample receipt: Date of test: 22/02/25 Date of issue: 24/02/25

Sample name: Pannello Life Green Composite Type 2 coated

Effects of light exposure UNI EN 15187:2007

Atlas C.i. 3000+ w.o. Apparatus: Radiation source: Xenon arc lamp Irradiance at 420 nm: 1,25 W/m² Inner filter: borosilicate Outer filter: soda-lime Black panel temperature: 55 ± 2 °C Irradiance determination system: automatic Relative humidity: 50 ± 10% Blue wool standard assessment: visual

2 N. of observers:

Test duration: until grade 4 color change of the blue wool standard n. 6 in the grey scale

Test results:

Grey scale ISO 105 A02	Remarks
4/5	///

Light fastness:

Grey scale	Blue wool standard n.
> 4	> 6

Notes

- Chemical analysis of the tested material was not carried out.
- Conditioning period: from 29/12/2023 to 26/01/2024.
- The evaluation of the sample was performed by comparing the part exposed to the light against the reference part.

page 1/1

This test report is part of a PDF file digitally signed by Franco Bulian.

The managing director Dr. Franco Bullar

The sample name and when relevant, its description, are given by the orderer, and CATAS does not assume responsibility on this matter. This test report relates to the sample submitted for the test and no others. Additions, deletions or alterations are not permitted. This test report must always be reproduced in its entirety. Unless otherwise required by standards and technical specifications or agreed with the customer, any declarations of conformity made by CATAS are based on the comparison between results and reference values, where the confidence intervals of the measures are not taken into account. Unless otherwise stated, sampling is made by the customer; in this case the test results are referred to the sample as received.

5.7 Photographic impressions of panels and tests

The photo report includes pictures of Type 2 panels produced by the production tests 201.14, 202.18 and 204.19 (pictures 1 to 4) and of the flame test performed on the panel produced in test 204.19 (pictures 5).

Test 201.14

Picture 1: Type 2 201.14 Lot #105 Here a 4 mm coating on a 20 mm Type 2 panel Lot 105 This does not modify the recycling of the material.

Test 201.14

Picture 2: Test 201.14 # Lot # 105

Evaluation: Good consistency and compactness for 201.14 . Good R-PMMA Surface with some bumps

Picture 3: Test 202.18 lot #211

Evaluation: Good consistency , not satisfactory R-PMMA Surface

Picture 4: Test 204.19 lot # 298

Evaluation: Very Good compactness , really nice aspect with coarse shredded sink waste and fiberglass – Good R-PMMA Surface

Recipe definite. Density 1.05 of R-PMMA coating

This recipe will ensure a good impermeability and hydrophobicity on all the mass of material.

Flame behaviour tests of Type 2 – 204.19 following EN 13501 FL

Picture 5: Flame behaviour tests following EN 13501 FL

Evaluation:

Very Good .

Back of panel totally intact, loss of weight below 2,5%.

5.8 Report on CNC Cutting cutting and milling of the Type 2 Panels

Each panel made was refiled on the production line and calibrated using a double-sanding line.


We have also verified the feasibility of milling on our CMS PENTAX CNC 5-axes machining centre

Picture 6: CNC milling of Type 2 panel

Picture 7: CNC milling of Type 2 panel coated

Note different color of milled surface

Milling was feasible and not different from our other recycled composites materials, no issue from the CNC milling also through the R-PMMA coating, with no deflaking or other defects, although since the milling removes the coating, for maximal protection it should be reapplied.

Here below a table of the processing:

Type 2 anel application	Coating	Solution
Milling - 3D surface	Need to be reapplied	Coating on finished product
Drilling and through cutting Coating good or		Coating of side and flanks only for hard use

6. Green worktops Type 3

6.1 Composition

TYPE 3 panels are solid colour panel Multilayer: Composed of a visible layer (10 to 20%) and an invisible layer (90 to 80%). The invisible layer consists of 95% various lightened polyester scraps, glass fibre and PVC; 5% polyurethane resin Resulting in a Lower quality slab with low density. Outer surface in sink waste composite/dispersion green, in specific R-PMMA and R-Granulates or R-Quartz and inner core in recycled low-density rigid foam, to be placed on market that is currently dominated by wood-particle laminates; the goal is to produce a panel with a recycled material content of at least 95%.

	50	DELTA sink waste
SOLID COLOR PANEL MULTILAYER (TYPE 3)	20 to 35%	Polyester and rigid foams
	5%	Polyurethane resin
	10 to 25%	R-PMMA Coating with r-granulates or r- quartz

6.2 Production trials and evaluation

GEES conducted 5 different test runs , on production and laboratory press.

We have tried both the co-moulding of the visible outer layer R-PMMA+R-Granulates over the Medium density recycled composites (tests 256/02 and 268/02), and the lamination of previously made R-PMMA+R-Granulates over Medium density recycled composites (tests 255/01 and 265.01).

The co-moulding tests yielded unacceptable results, with an un-eveness of the surface - charactheristic that was sought - but with erratic and non-replicable results, probably due to the different polymerisation behaviours of the different resins and the difficulty of obtaining a constant heating of the resin-filler mixture.

Below is the summary table of tests conducted and results obtained from the first standard evaluation based on density, flatness and surface characteristics.

Life Green Production tests

Composite Type 3

Test#	Period	Lot#	Thickness	Density avg	Density Max	Density min	In tolerance	Planarity	Surface	Edge
255/01	May 24	A15	20+5	1055	1112	1010	Yes	<3	Good	Good
256/02	Jul 24	A15+Plado s	20+7	1241	1250	1155	No	>5	Bad	Bad
265/01	Sep 04	298	24+3	1055	1080	1001	Yes	>3	Discret e	Bad
268/02	Sep 24	299	24+4	1045	1100	1002	No	>5	Bad	Bad

6.3 External test report: mechanical performances

The impossibility to have a repeatable performance led to the avoidance of mechanical tests on the Type 3 panels, since the variability of results would have made them unusable.

6.4 External test reports: resistance to stains, chemicals and cleansing products

For this panel type 255/01 were done again tests to stain and chemical resistance to confirm the good results obtained with the coated monolayer, to be sure of the potential of compact recyled "Solid Surface style" for future application in separated production.

Here are some excerpts from tests results from DELTA.

DELTA TECHNICAL REPORT D-01/2025

Test on resistance to chemical products

		Evaluation and conformity				
Family	Product	After rinse with water	Water cleaning with sponge	Allumina + wáter cleaning with sponge		
Acids	Acetic Aclid (CH ₃ COOH), 10% V/V	Е	E	I		
Alcali	Soda caustic (NaOH), 5% m/m	E	E	1		

Alcol	Ethanol (C₂H₅OH), 70% V/V	Е	E	1
Whithening	Sodium Hypochlorite (NaOCI), 5% active chlore (Cl ₂) ²	Е	E	1
Colorants	Methylene blue, 1% m/m	E	E	I
Salts	Sodium chlorure (NaCl) 170g/l, diluite to 50%	E	E	1

Test on surfaces resistance to domestic cleaning products

	Evaluation and conformity			
Product	After rinse with water	Water cleaning with sponge		
1. Lisoform Bathroom Gel	E	E		
2. Viakal	E	E		
3. Cif creme	E	E		
4. Bleach	E	E		
5. Ammonia	E	E		
6. Alcool	E	E		
7. Multiuse (Glassex)	E	E		

Legenda of evaluation results

- **A.** Deformation or swelling of surface (NC)
- **B**. Evident change of color and gloss (NC)
- **C**. Moderate change of color and gloss (NC)
- **D**. Very light change of color and gloss, visible only on particular viewing angle (NC)
- **E**. No visible changes (C)

Results are confirming the high resistance of R-PMMA-R-Granulates-R-Quartz compact material; in future we will evaluate new production technologies.

6.5 Photographic impressions of panels and tests

The photo report includes pictures of Type 3 panels produced by the production tests 255.01, 256.02, 265.01 and 268.02 (pictures 8 to 11)

Test 255.01

Picture 8: Type 3 panel 255.1

Evaluation: Very good product, good alternative to virgin Solid Surface. The impossibility of a direct production with co-moulding (verified in later tests) makes this much more complex and require a different production line specific for solid surface

Test 256.02

Picture 9: Type 3 panel 256.02

Evaluation:

This co-moulding test shows the erratic behaviour of the R-PMMA resin with the R-Granulates outer layer, the result varies too much to be reliable for industrial production, plus the different resins induce tensions on the panels that may become convex or concave

Test 265.01

Picture 10: Type 3 panel 265.01

Evaluation:

Test of lamination of moulded R-PMMA+R-Granulates are much more constant and repeatable , however care need to be used with a good surface finish of both layers, to avoid fissures or pause of contact between the two layers.

Test 268.02

Picture 11: Type 3 panel 268.02

Evaluation:

One of the many tests made to try the comoulding without good results - As shown the variability may be also due to the R-PMMA polymerisation behaviour at the higher temperature required by the GEES process for medium density composite process; in this case the R-PMMA+R-Granulate layer seems to have microbubbles from resin boiling.

7. Type 4 Panels

The results of the Type 3 panels were not satisfactory especially for the simpler co-moulding process; this led us to choose to develop an additional type of panel that would ensure:

- Uniform and homogeneous composition
- Possibility of mass-tooling like milling
- Lower wear and energy use

7.1 Composition and production trials

Learning from the experiences of Type 1 and 3 we chose to have a better selection of the raw feedstock, using a sieved white sink waste of granulometry 0,3-2,5 mm mixed with a low density < 2 mm powder from Rohacell PMI foam recycling, that act both as a fluidifying agent and compatibilizer (PMI foam is both of acrylic origin). In this way we obtained:

 Type 4 Solid colour panel Monolayer: composed of 70 % White sink waste and 30% White PMI Rohacell powder <2 mm, Additivated with 5% of black iron oxide.

The addition of black iron oxide allowed us to verify whether the granulated waste of the White sink, which is the largest quantity, can allow us to obtain a colored mass material with a homogeneous structure and appearance.

• Two tests were done, for medium density <840 kg/m3 and high density 1400 kg/m3

Life Green Production tests Type

Composite 4

Test#	Period	Lot#	Thickness	Density avg	Density Max	Density min	In tolerance	Planarity	Surface	Edge
302/1	Jan 25	10	20	845	910	812	Yes	<3	Good	Good
303/2	Feb 25	17. 644	Multiple	1400	1420	1381	Yes	<3	Good	Good

The sink waste prepared for the test:

Picture 12: sink waste mixed with PMI foam

Feedstock mixed before adding bonding agent

- Feedstock doesn't create problems in mixing and homogenizing, seems to have a lower wear on tools and parts probably due to PMI powder acting as a fluidizing agent
- Production requires high pressure to ensure the surface quality
- Cycle time is analogue to other sink waste based materials

This material was also coated with R-PMMA resin obtaining the same results of resistance to chemical products and stains as for the other panel Types.,

Picture 13: Panel on production line

Test 303/2 lot # 17644 was made for the industrial production of High density Type 4 panels in the following thickness: 25 mm, 22 mm, 15 mm, 12 mm.

Density 1400 kg/m3 was indicated by potential customers as the ideal for natural stone alternative.

External test reports: chemical resistance

7.2 External test report: mechanical performance

Test 303/2 lot # 17644 material was subject to Flexion and Compression tests, that show an increase in resistance and reduction of variability. This is probably due to the better homogenization, reduction of very small fines, thus increasing the efficacy of the bonding agent.

A note on tests results: the Thickness of the panels was 22 mm for the uncalibrated panel, reduced to 21 mm after calibration, variations on thickness are intrinsic to the process and recycled content.

CATAS S.p.A. Testing site: via Antica, 24/3 via

Antica, 24/3

33048 San Giovanni al Nat. (UD) +39 0432 747211 - lab@catas.com tel. +39 0432 747211

www.catas.com lab@catas.com

GEES RECYCLING S.R.L. VIA MONTE COLOMBERA 22 33081 AVIANO (PN)

ITALIA

TEST REPORT

398231 / 1

Revision: 0

Date of sample receipt: 20/04/25
Date of test: 12/05/25
Date of issue: 21/05/25

Sample name: Pannello Life Green Composite type 4

Plastics - Flexural properties UNI EN ISO 178:2019

Sample description: Not declared

Test method: A (one speed of testing)

Nominal thickness: 22 mm Support span: 336 mm

Specimen preparation: Performed by the customer

Test direction:

Not identifiable

Specimen shape: Parallelepiped

Conditioning

> 72 h (23±2 °C and 50±5% r.h.)

Testing equipment:

Instron dynamometer mod. 5585

Test speed: 5 mm/min

Tested surface: Not identifiable

Risultati della prova:

Specimen n°	Width mm	Thickness mm	Maximum load N	Flexural strength MPa	Modulus of elasticity MPa
1	19,7	21,33	185	10,2	3.890
2	19,2	21,04	191	12,5	4.264
3	19,8	21,33	225	13,4	4.545
4	20,3	21,04	156	9,2	3.245
5	19,1	21,34	182	11,3	3.985
6	20,4	21,34	212	11,3	3.985
7	19,6	21,04	165	9,5	3.489
			Mean Value	11,1	3.914
			Standard deviation	1,4	251

Notes:

- Test ref. declared by the customer: Progetto 101074703-LIFE21-ENV-IT LIFE GREEN COMPOSITE
- Chemical analysis of the tested material has not been carried out.
- The company who asked for the test has collected and sampled the specimens.

The sample name and, when relevant, its description, are given by the orderer, and CATAS does not assume responsibility on this matter. This test report relates to the sample submitted for the test and no others. Additions, deletions or alterations are not permitted. This test report must always be reproduced in its entirety. Unless otherwise required by standards and technical specifications or agreed with the customer, any declarations of conformity made by CATAS are based on the comparison between results and reference values, where the confidence intervals of the measures are not taken into account. Unless otherwise stated, sampling is made by the customer; in this case the test results are referred to the sample as received.

CATAS S.p.A. Testing site: via Antica, 24/3 via

Antica, 24/3

33048 San Giovanni al Nat. (UD) +39 0432 747211 - lab@catas.com tel. +39 0432 747211

www.catas.com lab@catas.com

GEES RECYCLING S.R.L. VIA MONTE COLOMBERA 22 33081 AVIANO (PN)

ITALIA

TEST REPORT

398231 / 2

Revision: 0

Date of sample receipt: 20/04/25
Date of test: 12/05/25
Date of issue: 21/05/25

Sample name: Pannello Life Green Composite type 4

Plastics - Compressive strength UNI EN ISO 604:2008

Sample description declared: Not declared

Specimen shape and load direction: Parallelepiped and a compressive load is applied on the specimen surface

Nominal thickness: 22 mm

Conditioning: > 72h (23±2 °C and 50±5 % r.h.) Test conditions 23±2 °C and

50±5 % r.h.

Test equipment: Instron dynamometer mod. 5985

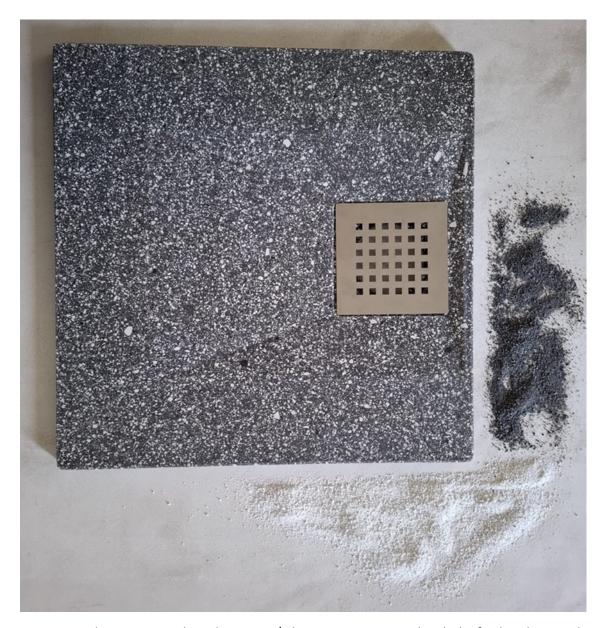
Load applicators: Steel plates (Ø 150 mm)

Test speed: 2 mm/min

Test results:

Specimen n°	Width mm	Length mm	Maximum load N	Compressive strength MPa		
1	20,26	19,98	13.520	34,2		
2	20,44	20,04	15.450	37,9		
3	20,41	20,43	15.402	37,4		
4	19,92	20,11	14.680	36,9		
5	20,52	19,78	15.954	38,6		
6	20,32	20,12	13.850	34,6		
7	19,30	19,91	13.803	34,6		
8	20,49	19,32	15.074	37,8		
			Mean value	36,5		
	Standard deviation					
	5,2 %					

Notes:


- Test ref. declared by the customer: Progetto 101074703-LIFE21-ENV-IT LIFE GREEN COMPOSITE- Chemical analysis of the tested material has not been carried out.

- The company who asked for the test has collected and sampled the specimens.

The sample name and, when relevant, its description, are given by the orderer, and CATAS does not assume responsibility on this matter. This test report relates to the sample submitted for the test and no others. Additions, deletions or alterations are not permitted. This test report must always be reproduced in its entirety. Unless otherwise required by standards and technical specifications or agreed with the customer, any declarations of conformity made by CATAS are based on the

7.3 Photographic impressions of panels Type 4

Picture 14: Showertray made with Test 303/2 lot # 17644 - Material with the feedstocks in evidence

Evaluation: Test had very good results

Picture 15: samples prepared for the commercial launch

Aesthetic results were so good to put in the catalog and sample collection, for presentation to Salone del Mobile in Milan, where several applications of Type 4 were exposed.

Picture 16: Materially exposition of Type 4 materials at Milan Salone del Mobile

8. Conclusions

Experiments and production trials demonstrated that the production of kitchentops from recycling of kitchen sinks and other composite waste is feasible and achievable in the same production line of lower density recycled composites.

3 different types of panels are all obtainable with standard production techniques and small modifications to recipes. The type 3 panels could not be obtained with a single co-moulding process and requires two specific processes, thus making the production more complex and increasing the costs and impacts; still this may be an alternative to virgin solid surfaces materials with high costs and high impacts.

To summarize the results obtained in panels development:

- Type 1 Ex. READY FOR MARKET APPLICATION Development details in Deliverable 3.1.
- Type 2 Recycled Sink waste panel with R-PMMA Coating / surface layer
- Type 3 Recycled medium density panel with surface layer in R-PMMA and R-Granulates or R-Quartz
- Type 4 Recycled Sink waste and PMI Foam powder

Type 1, 2, and 4 may be made with a single step process, while Type 3 needs two specific different moulding and a lamination to have a standardized constant product; the complete process has not been completed. Found the right recipe of process, and having done modifications, material obtained is solid, compact, naturally hydrophobic, thus confirming to reach the properties required for a mass market application. Capable to be milled and cutted on CNC machines or standard with specific diamond or carbide tooling.

Production showed that doesn't require more energy respect other kind of waste feedstock, so the LCA if the new material will be probably as favorable as the other standard Gees products.

One of the most significant results of this Project is the development of the R-PMMA Coating "R-Syrup" that is a real breaktrough: Currently there are no commercial coatings of any type with a significant recycled content apart powder coating, where Arkema has announced as environmental innovation powdercoatings with up to 40% recycled content; DELTA R-Syrup has more than 90% recycled content and a really favourable environmental balance.

The combination of recycled product with recycled coating is a relevant innovation, totally in line with project.